
 Skip to content QuestPDF

SearchK

Main NavigationDocumentationQuick start
Getting started
API reference
Design patterns

PricingLicenseLicense Selection Guide
Community MIT
Professional and Enterprise

Terms of Service
Privacy Policy

GitHubNuGetContact
Appearance

MenuReturn to top

 Sidebar Navigation
Introduction

Introduction

Quick start

Getting started

License configuration

Previewer

Releases

Roadmap

Acknowledgements

Visual elements

Text

Image

Background

Border

Line

Canvas

Placeholder

Positional elements

Width

Height

Alignment

Padding

Aspect Ratio

Extend

Minimal box

Translate

Rotate

Scale

Scale to fit

Flip

Unconstrained

Content flow elements

Page break

Show if

Show once

Skip once

Show entire

Ensure space

Stop paging

Layout elements

Page

Table

Column

Row

Grid

Inlined

Decoration

Layers

List

Other elements

Section

Section Link

Hyperlink

Element

Default Text Style

Content Direction (RTL)

Debug Area

Debug Pointer

Concepts

Settings

Document metadata

Document settings

Generating output

Merging documents

Execution order

Creating DSL

Components

Dynamic components

Length unit types

Colors

Basic fonts

Prototyping

Exceptions

Examples

Complex layouts

Custom first page

Implementing charts

Going Production

Platform specific dependencies

Font management

Reducing output size

On this page
 Table of Contents for current page

Components
A component is a special type of element that can generate content depending on its state. This approach is really common in many web-development libraries and solves multiple issues. You should consider creating your own component when part of your document will be reused in other documents. Another good application of components is when you plan to repeat a complex section. In this case, you could implement a component that takes input via the constructor parameters, and generates PDF content. Such a component can readily be used in a for loop, for example. All things considered, components are a useful tool to organize and reuse your code.
TIP
Components offer a lot of flexibility and extendability. Because of that, the QuestPDF library will receive several important updates to enhance components features even more. Stay tuned for slots!

In this tutorial, we will create a simple component to generate a random image from the fantastic webpage called Lorem Picsum. To show how the component's behaviour can be dynamically changed, an optional greyscale flag can be specified in the component constructor.
csharp//interface
public interface IComponent
{
 void Compose(IContainer container);
}

// example implementation
public class LoremPicsum : IComponent
{
 public bool Greyscale { get; }

 public LoremPicsum(bool greyscale)
 {
 Greyscale = greyscale;
 }

 public void Compose(IContainer container)
 {
 var url = "https://picsum.photos/300/200";

 if(Greyscale)
 url += "?grayscale";

 using var client = new WebClient();
 var response = client.DownloadData(url);
 container.Image(response);
 }
}

Example usage:
csharp.Column(column =>
{
 column.Spacing(10);

 column
 .Element()
 .Component(new LoremPicsum(true));

 column
 .Element()
 .AlignRight()
 .Text("From Lorem Picsum");
});

The result of the sample code is shown below:

TIP
If the component class has a parameterless constructor, you can use the generic Template method like this:
csharp.Component<ComponentClass>();

Previous pageCreating DSL
Next pageDynamic components

Released under the MIT License
Copyright © 2020-present Marcin Ziąbek CodeFlint

